An Efficient Green Synthesis of Copper Oxide NanoCrystalline

Document Type : Research Paper


Faculty of Sciences, Najafabad Branch, Islamic Azad University, Najafabad, Esfahan, Iran


In this study, a feasible green method for the synthesis of copper oxide nanocrystalline is described by using sour cherry juice which has a significant effect on crystalline size, and morphology. The benefits of the green method, not only nanometer scale are formed but also low-cost method are obtained in a normal atmosphere which it has been used (CH3COO)2Cu.H2O individually as Cu sources. All samples have calcination in 600°C. The effect of sour cherry juice concentration to control crystal growth is investigated by changing the amount of it to 20, 40, and 80 mL, respectively. The synthesized particles are characterized by using X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FE-SEM). Powder X-ray Diffraction analysis confirms that pure Copper Oxide nanocrystallines are in a single phase monoclinic structure which the average crystalline size has estimated via Williamson-Hall plot from the highest peak of the XRD was among 15-55 nm for all samples.


[1]  Nath S.K., Kalita P.K., Nanoscience and Nanotechnology: An Int. J., 2 (2012), 8.
[2]  Sambandam A., Lee G.J., Wu J., Ultrason. Sonochem., 19 (2012), 682.
[3]  Zhou K., Wang R., Xu B., Li Y., Nanotechnology., 17 (2006), 3939.
[4]  Zhang Q., Zhang K., Xu D., Yang G., Huang H., Nie F., Liu Ch., Yang Sh., Materials Science, 60 (2014), 208.
[5]  Raja Naika H., Lingaraju K., Manjunath K., Kumar D., Nagaraju G., Suresh D., Nagabhushana H., J. Taibah University for Science, 9 (2015), 7.
[6]  Wang H., Xu J.Z., Zhu J.J., Chen H.Y., J. Cryst. Growth, 244 (2002), 88.
[7]  Zhang Q., Li Y., Xu D., Gu Z., J. Mater. Sci. Lett., 20 (2001), 925.
[8]  Xu J.F., Ji W., Shen Z.X., Tang S.H., Ye X.R., Jia D.Z., Xin X.Q., J. Solid State Chem., 147 (2000), 516.
[9]  Yia A.J., Li J., Jian W., Bennett J., Xu J.H., Appl. Phys. Lett. 79 (2001), 1039.
[10] Fan H., Yang L., Hua W., Wu X., Wu Z.,  Xie S., Zou B., Nanotechnology, 15 (2004), 37.
[11] Acharyulu N.P.S., Dubey R.S., Swaminadham V., Kalyani R.L., Kollu P., Pammi S.V.N., Int. J. Engineering Research & Technology, 3 (2014), 639.
[12] M. Ahamed, P. Karuppiah, H. A. Alhadlaq, N. A. Al-Dhabi, M. A. Majeed Khan, J. Nanomaterials, 2014 (2014), 4.
[13] Yang R.C., Zhang Z.H., Ren Y.M., Zhang X., Chen Z.M., Xu M.D., J. Materials Science and Technolog, 31 (2014), 25.
[14] Tadjarodi A., Roshani R., J. Current Chemistry Letters, 3 (2014), 215.
[15] Vellora V., Padil Th., Cerník M., Int. J. Nanomedicine, 8 (2013), 889.
[16] Bonerz D., Wurth K., Dietrich H., Will F., Eur. Food Res. Technol., 224 (2007), 355.
[17] Capanoglu E., Boyacioglu D., de Vos R.C.H., Hall R.D., Wilder B., J. Berry Research, 1 (2011), 137.
[18] M. Toht-Marcus, F. Boross, P. Molnar, 1993. Int. Federation of Fruit Juice Producers (IFU) Symposium (Budapest), 329.
[19] Khorsand Zak A., Abd. Majid W.H., Abrishami M.E., Yousefi R., J. Solid State Sci., 13 (2011), 251.
[20] Kaume L., Howard L.R., Devareddy L., J. Agric. Food Chem., 60 (2012), 5716.
[21] Tavakoli F., Salavati-Niasari M., Ghanbari D., Saberyan K., Mostafa Hosseinpour-Mashkani S., J. Materials Research Bulletin, 49 (2014), 14.